login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A109853
a(n) = A109852(2^n).
2
1, 2, 5, 9, 13, 19, 29, 37, 43, 53, 61, 71, 79, 89, 101, 107, 113, 131, 139, 151, 163, 173, 181, 193, 199, 223, 229, 239, 251, 263, 271, 281, 293, 311, 317, 337, 349, 359, 373, 383, 397, 409, 421, 433, 443, 457, 463, 479, 491, 503, 521, 541, 557, 569, 577, 593
OFFSET
0,2
COMMENTS
Conjecture: a(n) is prime if n is not 0 nor 2.
Conjecture: a(n) is the (2n-2)nd prime for n>1. A109852(2^n-1): 1,3,5,11,17,23,31,41,47,59,67,73. - Robert G. Wilson v, Jun 14 2006
Conjecture: the Union of A109852(2^n-1) & A109852(2^n) is A046022: {1,2,3,4,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79, ...,} and except for 4, equals A008578: The noncomposite numbers. - Robert G. Wilson v, Jun 14 2006
LINKS
MATHEMATICA
f[s_] := Block[{k = 2, len = Length@s}, exp = Ceiling[Log[2, len]]; m = s[[2^exp - len + 1]]; While[MemberQ[s, k*m], k++ ]; Append[s, k*m]]; Rest@Nest[f, {1, 1}, 70]; t = Rest@Nest[f, {1, 1}, 2^14 + 3]; Table[t[[2^n]], {n, 0, 14}] (* Robert G. Wilson v, Jun 14 2006 *)
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jul 07 2005
EXTENSIONS
More terms from Robert G. Wilson v, Jun 14 2006
More terms from Rémy Sigrist, May 19 2019
STATUS
approved