login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071710
Highly Wilsonian primes: smallest primes p such that w(p)=n where w(n) denote the number of nonnegative integers k such that k! = +1 or -1 (mod n).
3
2, 3, 5, 7, 17, 67, 137, 23, 61, 71, 401, 1907, 661, 12227, 29873, 96731, 99721, 154243, 480209, 3408707, 1738901, 27341387
OFFSET
2,1
COMMENTS
Obviously w(n) is at least 2 because 0! = 1! = +1 (mod n) for every n. Also, if p is a prime, then w(p) is at least 4 because (p-2)! = +1 and (p-1)! = -1 (mod p) by Wilson's Theorem.
The smallest prime(k) such that A238444(k) = n-2. - Vladimir Shevelev, Feb 28 2014
The sequence w(n) is 1, 2, 3, 2, 4, 2, 5, 2, 2, 2, 5, 2, 4,... (offset 1) = 1 +A049046(n) +A238532(n) for n>2. - R. J. Mathar, Apr 02 2014
MATHEMATICA
w[n_] := Block[{c = k = m = 1}, While[k < n, m = Mod[m *= k, n]; If[m == 1 || m + 1 == n, c++ ]; k++ ]; c]
PROG
(PARI) wilsonian(p)={ local(s, t, pMinusOne); pMinusOne=p-1; s=4; t=24; for(k=5, p-3, t=(t*k)%p; if(t==1 || t==pMinusOne, s=s+1) ); s } \\ Charles R Greathouse IV, Jan 24 2007
CROSSREFS
Sequence in context: A168034 A034970 A048417 * A048403 A000519 A088732
KEYWORD
hard,more,nonn
AUTHOR
Benoit Cloitre, Jun 03 2002
EXTENSIONS
2 more terms from Charles R Greathouse IV, Jan 24 2007
a(23) from Igor Naverniouk (igor(AT)cs.utoronto.ca), May 09 2007
STATUS
approved