login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of coefficients in expansion of Sum_{k>=1} phi(k) * log(1/(1 - x^k)).
1

%I #15 Nov 21 2022 09:39:19

%S 1,3,7,11,21,7,43,43,61,63,111,77,157,129,49,171,273,61,343,231,43,

%T 333,507,301,521,471,547,473,813,147,931,683,259,819,129,671,1333,

%U 1029,1099,903,1641,43,1807,111,427,1521,2163,399,2101,1563,637,1727,2757,547,2331

%N Numerators of coefficients in expansion of Sum_{k>=1} phi(k) * log(1/(1 - x^k)).

%F a(n) = numerator of Sum_{d|n} phi(n/d) / d.

%F a(n) = numerator of Sum_{k=1..n} 1 / gcd(n,k).

%F a(n) = numerator of sigma_2(n^2) / (n * sigma_1(n^2)).

%F a(p) = p^2 - p + 1 where p is prime.

%F From _Amiram Eldar_, Nov 21 2022: (Start)

%F a(n) = numerator(A057660(n)/n).

%F Sum_{k=1..n} a(k)/A333696(k) ~ c * n^2, where c = zeta(3)/(2*zeta(2)) = 0.365381... (A346602). (End)

%e 1, 3/2, 7/3, 11/4, 21/5, 7/2, 43/7, 43/8, 61/9, 63/10, 111/11, 77/12, 157/13, 129/14, 49/5, ...

%t nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] Log[1/(1 - x^k)], {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest

%t Table[Sum[EulerPhi[n/d]/d, {d, Divisors[n]}], {n, 55}] // Numerator

%t Table[Sum[1/GCD[n, k], {k, n}], {n, 55}] // Numerator

%t Table[DivisorSigma[2, n^2]/(n DivisorSigma[1, n^2]), {n, 55}] // Numerator

%o (PARI) a(n) = numerator(sumdiv(n, d, eulerphi(n/d) / d)); \\ _Michel Marcus_, Apr 03 2020

%Y Cf. A000010, A000203, A001157, A018804, A057660, A071708, A072155, A074947, A074949, A333696 (denominators), A346602.

%K nonn,frac

%O 1,2

%A _Ilya Gutkovskiy_, Apr 02 2020