login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333621
Numbers that are divisible by the total number of 1's in both the Zeckendorf and the dual Zeckendorf representations of all their divisors (A300837 and A333618).
0
1, 2, 4, 126, 416, 442, 3025, 4588, 9243, 10428, 11900, 15070, 18176, 19436, 20532, 26956, 28582, 32108, 33028, 35278, 35929, 37634, 47678, 50386, 61952, 69254, 74578, 88984, 93534, 95120, 96334, 100326, 102297, 142894, 144039, 145768, 147664, 152817, 163125, 183002
OFFSET
1,2
EXAMPLE
126 is a term since A300837(126) = 21 and A333618(126) = 7 are both divisors of 126.
MATHEMATICA
zeckDigSum[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5] * # + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]];
zeckDivDigSum[n_] := DivisorSum[n, zeckDigSum[#] &];
fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
dualZeckSum[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, Total[v[[i[[1, 1]] ;; -1]]]]];
dualZeckDivDigSum[n_] := DivisorSum[n, dualZeckSum[#] &];
Select[Range[10^4], Divisible[#, zeckDivDigSum[#]] && Divisible[#, dualZeckDivDigSum[#]] &]
CROSSREFS
Intersection of A333619 and A333620.
Sequence in context: A006314 A326204 A259381 * A009595 A018493 A046035
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Mar 29 2020
STATUS
approved