login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333622
Numbers k such that k is divisible by the sum of digits of all the divisors of k in factorial base (A319712).
2
1, 2, 3, 4, 14, 22, 24, 27, 33, 36, 52, 72, 91, 92, 100, 135, 150, 187, 221, 231, 310, 323, 448, 481, 493, 494, 589, 663, 708, 754, 816, 884, 893, 897, 946, 1080, 1155, 1159, 1178, 1200, 1357, 1462, 1475, 1518, 1530, 1536, 1550, 1702, 1710, 1836, 1972, 1978, 2231
OFFSET
1,2
LINKS
EXAMPLE
14 is a term since its divisors are {1, 2, 7, 14}, their representations in factorial base (A007623) are {1, 10, 101, 210}, and their sum of sums of digits is 1 + (1 + 0) + (1 + 0 + 1) + (2 + 1 + 0) = 7 which is a divisor of 14.
MATHEMATICA
fctDigSum[n_] := Module[{s=0, i=2, k=n}, While[k > 0, k = Floor[n/i!]; s = s + (i-1)*k; i++]; n-s]; fctDivDigDum[n_] := DivisorSum[n, fctDigSum[#] &]; Select[Range[10^3], Divisible[#, fctDivDigDum[#]] &] (* after Jean-François Alcover at A034968 *)
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Mar 29 2020
STATUS
approved