login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300837 a(n) is the total number of terms (1-digits) in Zeckendorf representation of all divisors of n. 11
1, 2, 2, 4, 2, 5, 3, 5, 4, 5, 3, 10, 2, 6, 5, 7, 4, 9, 4, 10, 5, 6, 3, 13, 5, 5, 7, 11, 3, 13, 4, 10, 8, 6, 6, 16, 3, 8, 5, 14, 4, 12, 4, 11, 10, 8, 3, 18, 6, 11, 9, 10, 5, 16, 5, 14, 7, 6, 4, 23, 4, 8, 9, 13, 6, 16, 5, 10, 7, 14, 4, 23, 4, 8, 12, 12, 8, 13, 4, 20, 10, 9, 5, 23, 9, 9, 8, 17, 2, 22, 6, 12, 8, 6, 8, 24, 3, 12, 13, 19, 5, 15, 4, 14, 13 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10946

FORMULA

a(n) = Sum_{d|n} A007895(d).

a(n) = A300836(n) + A007895(n).

For all n >=1, a(n) >= A005086(n).

EXAMPLE

For n=12, its divisors are 1, 2, 3, 4, 6 and 12. Zeckendorf-representations (A014417) of these numbers are 1, 10, 100, 101, 1001 and 10101. Total number of 1's present is 10 (ten), thus a(12) = 10.

PROG

(PARI)

A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649

A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); };

A300837(n) = sumdiv(n, d, A007895(d));

CROSSREFS

Cf. A000045, A007895, A014417, A072649, A300835, A300836.

Cf. also A005086, A093653.

Sequence in context: A005128 A187782 A129296 * A321443 A333836 A125296

Adjacent sequences:  A300834 A300835 A300836 * A300838 A300839 A300840

KEYWORD

nonn

AUTHOR

Antti Karttunen, Mar 18 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 01:21 EDT 2020. Contains 337315 sequences. (Running on oeis4.)