login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330711
Numbers that are both Zeckendorf-Niven numbers (A328208) and lazy-Fibonacci-Niven numbers (A328212).
6
1, 2, 4, 6, 12, 16, 30, 36, 48, 55, 60, 72, 78, 84, 90, 102, 105, 126, 144, 156, 168, 180, 184, 192, 208, 238, 240, 252, 264, 304, 315, 320, 322, 344, 360, 370, 378, 396, 430, 432, 488, 528, 536, 540, 576, 590, 605, 609, 621, 639, 648, 657, 660, 672, 680, 702
OFFSET
1,2
LINKS
EXAMPLE
6 is in the sequence since A007895(6) = 2 and A112310(6) = 3, and both 2 and 3 are divisors of 6.
MATHEMATICA
zeckSum[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]];
fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
dualZeckSum[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, Total[v[[i[[1, 1]] ;; -1]]]]];
Select[Range[1000], Divisible[#, zeckSum[#]] && Divisible[#, dualZeckSum[#]] &]
CROSSREFS
Intersection of A328208 and A328212.
Sequence in context: A098895 A266543 A378314 * A220219 A284456 A233968
KEYWORD
nonn
AUTHOR
Amiram Eldar, Dec 27 2019
STATUS
approved