login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are both Zeckendorf-Niven numbers (A328208) and lazy-Fibonacci-Niven numbers (A328212).
6

%I #12 Dec 28 2019 14:18:30

%S 1,2,4,6,12,16,30,36,48,55,60,72,78,84,90,102,105,126,144,156,168,180,

%T 184,192,208,238,240,252,264,304,315,320,322,344,360,370,378,396,430,

%U 432,488,528,536,540,576,590,605,609,621,639,648,657,660,672,680,702

%N Numbers that are both Zeckendorf-Niven numbers (A328208) and lazy-Fibonacci-Niven numbers (A328212).

%H Amiram Eldar, <a href="/A330711/b330711.txt">Table of n, a(n) for n = 1..10000</a>

%e 6 is in the sequence since A007895(6) = 2 and A112310(6) = 3, and both 2 and 3 are divisors of 6.

%t zeckSum[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]];

%t fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];

%t dualZeckSum[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, Total[v[[i[[1, 1]] ;; -1]]]]];

%t Select[Range[1000], Divisible[#, zeckSum[#]] && Divisible[#, dualZeckSum[#]] &]

%Y Intersection of A328208 and A328212.

%Y Cf. A007895, A014417, A104326, A112310.

%K nonn

%O 1,2

%A _Amiram Eldar_, Dec 27 2019