login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266543
Number of n X 4 binary arrays with rows and columns lexicographically nondecreasing and row and column sums nonincreasing.
1
2, 4, 6, 12, 16, 27, 36, 57, 76, 114, 149, 213, 276, 379, 485, 645, 811, 1051, 1304, 1652, 2021, 2511, 3034, 3709, 4431, 5338, 6311, 7510, 8795, 10352, 12020, 14010, 16142, 18653, 21340, 24469, 27813, 31669, 35786, 40492, 45507, 51196, 57252, 64073, 71324
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) - a(n-5) - a(n-6) + 2*a(n-8) + 2*a(n-9) - a(n-11) - a(n-12) - a(n-13) - a(n-14) + 2*a(n-15) + a(n-16) - a(n-17).
Empirical g.f.: x*(2 + 2*x - 2*x^2 - 2*x^4 - x^5 + x^6 + 5*x^7 + 4*x^8 + 3*x^9 - x^10 - 2*x^11 - 2*x^12 - x^13 + 4*x^14 + 2*x^15 - 2*x^16) / ((1 - x)^6*(1 + x)^3*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Jan 10 2019
EXAMPLE
Some solutions for n=6:
..0..0..1..1....0..0..1..1....0..1..1..1....0..1..1..1....0..0..1..1
..0..1..0..1....0..1..0..0....1..0..1..1....1..0..0..1....0..1..0..1
..0..1..1..0....1..0..0..0....1..1..0..0....1..0..1..0....0..1..1..0
..1..0..0..0....1..0..0..0....1..1..0..0....1..1..0..0....1..0..0..1
..1..0..0..0....1..0..0..0....1..1..0..0....1..1..0..0....1..0..1..0
..1..0..0..0....1..0..0..0....1..1..0..0....1..1..0..0....1..1..0..0
CROSSREFS
Column 4 of A266547.
Sequence in context: A007416 A293132 A098895 * A378314 A330711 A220219
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 31 2015
STATUS
approved