The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293132 G.f.: 2*q * Product_{n>=1} (1 + q^(2*n))/((1 + q^n)*(1 + q^(2*n-1))*(1 + q^(4*n))) in powers of q. 5
 2, -4, 6, -12, 16, -24, 38, -52, 74, -104, 142, -192, 258, -340, 446, -584, 756, -972, 1244, -1580, 1996, -2516, 3148, -3924, 4878, -6032, 7434, -9136, 11182, -13644, 16608, -20148, 24378, -29428, 35422, -42540, 50978, -60940, 72700, -86556, 102838, -121952, 144360, -170564, 201176, -236900, 278494, -326876, 383094, -448288, 523824, -611248, 712256, -828860, 963324, -1118160, 1296296, -1501028, 1736030, -2005540 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS G.f. of row 1 in rectangular array A292929. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 1..2000 FORMULA a(n) ~ -(-1)^n * 7^(1/4) * exp(sqrt(7*n/3)*Pi/2) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 23 2017 EXAMPLE G.f.: A(q) = 2*q - 4*q^2 + 6*q^3 - 12*q^4 + 16*q^5 - 24*q^6 + 38*q^7 - 52*q^8 + 74*q^9 - 104*q^10 + 142*q^11 - 192*q^12 + 258*q^13 - 340*q^14 +... MATHEMATICA nmax = 50; CoefficientList[Series[2*Product[1/((1 + x^(2*k-1))^2 * (1 + x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 23 2017 *) PROG (PARI) {a(n) = polcoeff( 2*q * prod(m=1, n, (1 + q^(2*m))/((1 + q^m)*(1 + q^(2*m-1))*(1 + q^(4*m)) +q*O(q^n))), n, q)} for(n=1, 60, print1(a(n), ", ")) CROSSREFS Cf. A292929, A294065, A294066, A294067. Sequence in context: A171609 A099316 A007416 * A098895 A266543 A330711 Adjacent sequences: A293129 A293130 A293131 * A293133 A293134 A293135 KEYWORD sign AUTHOR Paul D. Hanna, Oct 22 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 07:15 EDT 2024. Contains 373433 sequences. (Running on oeis4.)