login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293130
Constant t defined by: t = Sum_{n>=1} 1 / floor( gamma(n+t)/gamma(t) ).
2
1, 4, 3, 9, 5, 8, 4, 5, 2, 5, 6, 3, 1, 4, 9, 3, 2, 7, 2, 1, 5, 1, 7, 0, 2, 0, 5, 4, 4, 9, 0, 0, 3, 3, 8, 4, 6, 4, 4, 5, 6, 5, 5, 7, 4, 3, 1, 2, 5, 5, 3, 1, 6, 3, 5, 3, 7, 2, 3, 2, 6, 0, 5, 7, 8, 9, 7, 2, 4, 7, 3, 0, 8, 6, 5, 8, 0, 9, 2, 2, 6, 8, 4, 2, 2, 1, 0, 0, 7, 8, 1, 2, 8, 6, 3, 0, 6, 9, 7, 8, 2, 4, 1, 5, 3, 0, 9, 5, 7, 5, 8, 6, 1, 1, 9, 1, 5, 7, 5, 5, 1, 6, 1, 1, 4, 7, 2, 8, 0, 7, 3, 9, 7, 6, 7, 3, 8, 9, 3, 6, 1, 1, 7, 2, 6, 7, 6, 7, 4, 2, 2, 4, 9, 6, 3, 5, 8, 0, 1, 0, 8, 0, 3, 9, 4, 0, 0, 8, 6, 1, 4, 1, 1, 4, 2, 5, 8, 1, 8, 7, 4, 3, 7, 1, 3, 6, 1, 6, 6, 8, 1, 0, 2, 8, 2, 0, 0, 1, 8, 5, 2
OFFSET
1,2
LINKS
FORMULA
t = Sum_{n>=1} 1 / floor( Product_{k=0..n-1} (k + t) ).
t = Sum_{n>=1} 1/A293131(n), where A293131(n) = floor(Product_{k=0..n-1} (k + t)).
EXAMPLE
This constant t is defined by
t = 1/[t] + 1/[t*(1+t)] + 1/[t*(1+t)*(2+t)] + 1/[t*(1+t)*(2+t)*(3+t)] + 1/[t*(1+t)*(2+t)*(3+t)*(4+t)] + 1/[t*(1+t)*(2+t)*(3+t)*(4+t)*(5+t)] + 1/[t*(1+t)*(2+t)*(3+t)*(4+t)*(5+t)*(6+t)] + 1/[t*(1+t)*(2+t)*(3+t)*(4+t)*(5+t)*(6+t)*(7+t)] +...
where [x] is the floor function of x.
Explicitly, t is the sum of the infinite series of unit fractions
t = 1 + 1/3 + 1/12 + 1/53 + 1/291 + 1/1878 + 1/13975 + 1/117949 + 1/1113390 + 1/11623335 + 1/132966129 + 1/1654043412 + 1/22229656253 + 1/320987000444 + 1/4955905924999 + 1/81473034355102 + 1/1420855869195491 + 1/26199991898769875 + 1/509316957086997352 + 1/10410226994717110400 + 1/223190941584248205202 + 1/5008311999035018587226 + 1/117392752432115751942460 + 1/2869030095761224977541954 + 1/72986933627698300236793754 + 1/1929744200916184847850410278 + 1/52951379113886857052967930528 + 1/1505915222058143312106047567382 + 1/44333518468215829832469997051113 + 1/1349493882731900596771978592981358 +...+ 1/A293131(n) +...
where A293131(n) = floor( gamma(n+t)/gamma(t) ).
The gamma function of t begins:
gamma(t) = 0.88581292008941981278905841201602316593162655110412781217...
The decimal expansion of the constant begins:
t = 1.43958452563149327215170205449003384644565574312553\
16353723260578972473086580922684221007812863069782\
41530957586119157551611472807397673893611726767422\
49635801080394008614114258187437136166810282001852\
71986524115283147181117613091464099152464344842194\
03130782239819712020783909070772646562174382319601\
87901109174676702574585741493758869423683283302132\
19772471377032093310941373611388876361314271966189\
51687129567401125902522698271243130375515730344144\
89398504298317880132453598772037634155976591780521\
17923774492711461792764326635007336455882638091226\
30796650668192788163602841905506059461656078746236\
24620578796218665453036847516136824206580370036312\
73379175306639573926145224686145601578124507300305\
84188067765705158712515491816705192407489451135262\
86190181616703980708946025822449467960139056972077\
40797366614187428360507507342927211168684236773137\
49294143987080470449032331057452351336014297439184\
50430557156584749123218047693367884635083738677873\
34019674977793547337375843041736088849917290621639\
54389852553420480346353414919523708146738903410993\
01233859364772149707547341029827962425502915272879\
35927631073694435379797551155875907341158582729140\
48357792934899982767160212975485636211452685422411\
97750583668403685526752220714544411739322089041786\
47472784769383100878345814573963489580745215743161\
34101260599898250324408071209287416844546576679828\
79209902086793019530239468625339504507647895589209\
85303626534482276737567070400346537075960151406652\
91201226973295295411721705817522528694811983355579\
30968457719586128867890291158799018076747738874511\
91956170297985333889975995109777626582090431672462\
69746949754661646216920177221895419536721000305683\
43574448536273273114489138972600109548422716852883\
33691388438786126807689424216476053233668428723892\
17238144570510561082073268842749039044087563882981\
11951204498793579405398580185429576405630930517014\
81915539926643164796767912245359092601523055879266\
00302904969244782163649633424417272066067277372356\
12974480645261857901432928896560897591776004010828...
CROSSREFS
Cf. A293131.
Sequence in context: A016704 A131896 A114380 * A103825 A073238 A010655
KEYWORD
nonn,cons
AUTHOR
Paul D. Hanna, Sep 30 2017
STATUS
approved