Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Oct 02 2017 20:13:08
%S 1,4,3,9,5,8,4,5,2,5,6,3,1,4,9,3,2,7,2,1,5,1,7,0,2,0,5,4,4,9,0,0,3,3,
%T 8,4,6,4,4,5,6,5,5,7,4,3,1,2,5,5,3,1,6,3,5,3,7,2,3,2,6,0,5,7,8,9,7,2,
%U 4,7,3,0,8,6,5,8,0,9,2,2,6,8,4,2,2,1,0,0,7,8,1,2,8,6,3,0,6,9,7,8,2,4,1,5,3,0,9,5,7,5,8,6,1,1,9,1,5,7,5,5,1,6,1,1,4,7,2,8,0,7,3,9,7,6,7,3,8,9,3,6,1,1,7,2,6,7,6,7,4,2,2,4,9,6,3,5,8,0,1,0,8,0,3,9,4,0,0,8,6,1,4,1,1,4,2,5,8,1,8,7,4,3,7,1,3,6,1,6,6,8,1,0,2,8,2,0,0,1,8,5,2
%N Constant t defined by: t = Sum_{n>=1} 1 / floor( gamma(n+t)/gamma(t) ).
%H Paul D. Hanna, <a href="/A293130/b293130.txt">Table of n, a(n) for n = 1..2000</a>
%F t = Sum_{n>=1} 1 / floor( Product_{k=0..n-1} (k + t) ).
%F t = Sum_{n>=1} 1/A293131(n), where A293131(n) = floor(Product_{k=0..n-1} (k + t)).
%e This constant t is defined by
%e t = 1/[t] + 1/[t*(1+t)] + 1/[t*(1+t)*(2+t)] + 1/[t*(1+t)*(2+t)*(3+t)] + 1/[t*(1+t)*(2+t)*(3+t)*(4+t)] + 1/[t*(1+t)*(2+t)*(3+t)*(4+t)*(5+t)] + 1/[t*(1+t)*(2+t)*(3+t)*(4+t)*(5+t)*(6+t)] + 1/[t*(1+t)*(2+t)*(3+t)*(4+t)*(5+t)*(6+t)*(7+t)] +...
%e where [x] is the floor function of x.
%e Explicitly, t is the sum of the infinite series of unit fractions
%e t = 1 + 1/3 + 1/12 + 1/53 + 1/291 + 1/1878 + 1/13975 + 1/117949 + 1/1113390 + 1/11623335 + 1/132966129 + 1/1654043412 + 1/22229656253 + 1/320987000444 + 1/4955905924999 + 1/81473034355102 + 1/1420855869195491 + 1/26199991898769875 + 1/509316957086997352 + 1/10410226994717110400 + 1/223190941584248205202 + 1/5008311999035018587226 + 1/117392752432115751942460 + 1/2869030095761224977541954 + 1/72986933627698300236793754 + 1/1929744200916184847850410278 + 1/52951379113886857052967930528 + 1/1505915222058143312106047567382 + 1/44333518468215829832469997051113 + 1/1349493882731900596771978592981358 +...+ 1/A293131(n) +...
%e where A293131(n) = floor( gamma(n+t)/gamma(t) ).
%e The gamma function of t begins:
%e gamma(t) = 0.88581292008941981278905841201602316593162655110412781217...
%e The decimal expansion of the constant begins:
%e t = 1.43958452563149327215170205449003384644565574312553\
%e 16353723260578972473086580922684221007812863069782\
%e 41530957586119157551611472807397673893611726767422\
%e 49635801080394008614114258187437136166810282001852\
%e 71986524115283147181117613091464099152464344842194\
%e 03130782239819712020783909070772646562174382319601\
%e 87901109174676702574585741493758869423683283302132\
%e 19772471377032093310941373611388876361314271966189\
%e 51687129567401125902522698271243130375515730344144\
%e 89398504298317880132453598772037634155976591780521\
%e 17923774492711461792764326635007336455882638091226\
%e 30796650668192788163602841905506059461656078746236\
%e 24620578796218665453036847516136824206580370036312\
%e 73379175306639573926145224686145601578124507300305\
%e 84188067765705158712515491816705192407489451135262\
%e 86190181616703980708946025822449467960139056972077\
%e 40797366614187428360507507342927211168684236773137\
%e 49294143987080470449032331057452351336014297439184\
%e 50430557156584749123218047693367884635083738677873\
%e 34019674977793547337375843041736088849917290621639\
%e 54389852553420480346353414919523708146738903410993\
%e 01233859364772149707547341029827962425502915272879\
%e 35927631073694435379797551155875907341158582729140\
%e 48357792934899982767160212975485636211452685422411\
%e 97750583668403685526752220714544411739322089041786\
%e 47472784769383100878345814573963489580745215743161\
%e 34101260599898250324408071209287416844546576679828\
%e 79209902086793019530239468625339504507647895589209\
%e 85303626534482276737567070400346537075960151406652\
%e 91201226973295295411721705817522528694811983355579\
%e 30968457719586128867890291158799018076747738874511\
%e 91956170297985333889975995109777626582090431672462\
%e 69746949754661646216920177221895419536721000305683\
%e 43574448536273273114489138972600109548422716852883\
%e 33691388438786126807689424216476053233668428723892\
%e 17238144570510561082073268842749039044087563882981\
%e 11951204498793579405398580185429576405630930517014\
%e 81915539926643164796767912245359092601523055879266\
%e 00302904969244782163649633424417272066067277372356\
%e 12974480645261857901432928896560897591776004010828...
%Y Cf. A293131.
%K nonn,cons
%O 1,2
%A _Paul D. Hanna_, Sep 30 2017