login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293135
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. Product_{i>0} Sum_{j=0..k} x^(j*i)/j!.
9
1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 12, 0, 1, 1, 3, 12, 48, 0, 1, 1, 3, 13, 72, 360, 0, 1, 1, 3, 13, 72, 480, 2880, 0, 1, 1, 3, 13, 73, 500, 3780, 25200, 0, 1, 1, 3, 13, 73, 500, 4020, 35280, 241920, 0, 1, 1, 3, 13, 73, 501, 4050, 37380, 372960, 2903040, 0
OFFSET
0,9
LINKS
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, ...
0, 2, 3, 3, 3, ...
0, 12, 12, 13, 13, ...
0, 48, 72, 72, 73, ...
0, 360, 480, 500, 500, ...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
end:
A:= (n, k)-> n!*b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Oct 02 2017
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, i - 1, k]/j!, {j, 0, Min[k, n/i]}]]];
A[n_, k_] := n! b[n, n, k];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)
CROSSREFS
Columns k=0..5 give A000007, A088311, A293138, A293195, A293196, A293197.
Rows n=0 gives A000012.
Main diagonal gives A000262.
Cf. A293139.
Sequence in context: A276921 A339677 A333158 * A321376 A102210 A124220
KEYWORD
nonn,tabl,look
AUTHOR
Seiichi Manyama, Oct 01 2017
STATUS
approved