login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009595
Expansion of e.g.f. sinh(sin(x)*x), even powers only.
2
0, 2, -4, 126, -3368, 95770, -4408812, 265489238, -18154718416, 1485105153714, -146642787086420, 16695614806747822, -2147275569222109944, 312504772665433249226, -51165984479663630172988, 9306072483765112492581510
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n-1} binomial(2*n,2*k+1)*(2^(-2*k)*Sum_{i=0..k} (2*i -2*k-1)^(2*n-2*k-1)*binomial(2*k+1,i)*(-1)^(n-i)). - Vladimir Kruchinin, Jun 29 2011
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Sinh[Sin[x]*x], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; ;; 2]] (* G. C. Greubel, Jan 30 2018 *)
PROG
(Maxima)
a(n):=sum(binomial(2*n, 2*k+1)*(2^(-2*k)*sum((2*i-2*k-1)^(2*n-2*k-1)*binomial(2*k+1, i)*(-1)^(n-i), i, 0, k)), k, 0, n-1); /* Vladimir Kruchinin, Jun 29 2011 */
(PARI) my(x='x+O('x^50)); v=Vec(serlaplace(sinh(x*sin(x)))); concat([0], vector(#v\2, n, v[2*n-1])) \\ G. C. Greubel, Jan 30 2018
CROSSREFS
Sequence in context: A326204 A259381 A333621 * A018493 A046035 A376315
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved