login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333613
a(1) = 1; thereafter a(n) = Sum_{k = 1..n} a(k/gcd(n,k)).
2
1, 2, 4, 7, 15, 21, 51, 78, 158, 230, 568, 661, 1797, 2595, 5117, 7789, 19095, 21702, 59892, 81801, 171329, 258028, 630942, 713093, 1887828, 2776798, 5727675, 8335692, 20702970, 21420664, 62826604, 92041835, 189376593, 281410640, 656577018, 742729123, 2087788417
OFFSET
1,2
LINKS
FORMULA
a(1) = 1; a(n) = Sum_{k = 1..n} a(lcm(n, k)/n).
a(1) = 1; a(n) = Sum_{d|n} Sum_{k = 1..d, gcd(d, k) = 1} a(k).
MAPLE
A333613:= proc(n) option remember;
if n<3 then n;
else add( A333613(lcm(n, j)/n), j = 1..n);
end if; end proc;
seq(A333613(n), n=1..40); # G. C. Greubel, Mar 08 2021
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Sum[a[k/GCD[n, k]], {k, n}]; Table[a[n], {n, 37}]
a[1] = 1; a[n_] := a[n] = Sum[Sum[If[GCD[k, d] == 1, a[k], 0], {k, d}], {d, Divisors[n]}]; Table[a[n], {n, 37}]
PROG
(Sage)
@CachedFunction
def A333613(n): return 1 if n==1 else sum( A333613(lcm(n, j)/n) for j in (1..n) )
[A333613(n) for n in (1..40)] # G. C. Greubel, Mar 08 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 28 2020
STATUS
approved