OFFSET
0,4
COMMENTS
a(n+2) = 2*a(n) + a(n+1) if and only if n is the lesser of a pair of twin primes (i.e., n is in A001359). - Benoit Cloitre, Nov 28 2002
Starting with offset 1 = row sums of triangle A143656. - Gary W. Adamson, Aug 28 2008
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..500
FORMULA
Lim sup a(n+1)/a(n) = 3. - Jan Szejko (js248325(AT)students.mimuw.edu.pl), May 29 2010
Equals M * V where M = A054521 is an infinite lower triangular matrix and V = A045545 is a vector starting [1, 1, 2, 3, 7, 8, ...]. E.g., a(6) = 8 since the relative primes of 6 are 1 and 5 and a(1) + a(5) = 1 + 7 = 8. - Gary W. Adamson, Jan 13 2007
MAPLE
a := proc(n) local j; option remember;
if n <3 then 1;
else add(`if`(gcd(n, j) = 1, a(j), 0), j = 1 .. n - 1);
end if; end proc;
seq(a(n), n = 0 .. 30); # G. C. Greubel, Mar 08 2021
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Block[{k = 0, s = 0}, While[k < n, If[ GCD[n, k] == 1, s = s + a[k]]; k++ ]; s]; Table[ a[n], {n, 0, 35}] (* Robert G. Wilson v, Jun 09 2006 *)
a[n_]:= a[n]= If[n<3, 1, Sum[Boole[GCD[n, k]==1] a[k], {k, n-1}]]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, Mar 08 2021 *)
PROG
(Sage)
@CachedFunction
def a(n):
if n<3: return 1
else: return sum( kronecker_delta(gcd(n, j), 1)*a(j) for j in (0..n-1) )
[a(n) for n in (0..40)] # G. C. Greubel, Mar 08 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved