login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333615
a(n) is the number of ways to express 2*n+1 as a sum of parts x such that x+2 is an odd prime.
1
1, 2, 3, 4, 7, 10, 13, 20, 26, 34, 48, 61, 78, 103, 129, 162, 206, 256, 314, 391, 479, 579, 711, 859, 1028, 1243, 1485, 1764, 2107, 2497, 2941, 3477, 4092, 4783, 5610, 6557, 7615, 8872, 10303, 11901, 13781, 15910, 18292, 21062, 24196, 27697, 31726, 36287
OFFSET
0,2
EXAMPLE
For n = 3, 2*n + 1 = 7. There are 4 partitions of 7 into parts with sizes 1, 3, 5, 9, 11 ... (the odd primes minus 2):
7 = 5 + 1 + 1
7 = 3 + 3 + 1
7 = 3 + 1 + 1 + 1 + 1
7 = 1 + 1 + 1 + 1 + 1 + 1 + 1
So, a(3) = 4.
MATHEMATICA
a[n_] := Module[{p},
p = Table[Prime[i] - 2, {i, 2, PrimePi[2*n + 3]}];
Length[IntegerPartitions[2*n + 1, {0, Infinity}, p]]]
Table[a[n], {n, 0, 60}]
PROG
(PARI)
\\ Slowish:
partitions_into(n, parts, from=1) = if(!n, 1, if(#parts==from, (0==(n%parts[from])), my(s=0); for(i=from, #parts, if(parts[i]<=n, s += partitions_into(n-parts[i], parts, i))); (s)));
odd_primes_minus2_upto_n_reversed(n) = { my(lista=List([])); forprime(p=3, n+2, listput(lista, p-2)); Vecrev(Vec(lista)); };
A333615(n) = partitions_into(n+n+1, odd_primes_minus2_upto_n_reversed(n+n+1)); \\ Antti Karttunen, May 09 2020
CROSSREFS
Cf. A069259 (partitions of 2*n, instead of 2*n+1).
Cf. A101776.
Sequence in context: A065461 A008824 A261616 * A329774 A081942 A228588
KEYWORD
nonn
AUTHOR
Luc Rousseau, Mar 29 2020
STATUS
approved