login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329774
a(n) = n+1 for n <= 2; otherwise a(n) = 3*a(n-3)+1.
3
1, 2, 3, 4, 7, 10, 13, 22, 31, 40, 67, 94, 121, 202, 283, 364, 607, 850, 1093, 1822, 2551, 3280, 5467, 7654, 9841, 16402, 22963, 29524, 49207, 68890, 88573, 147622, 206671, 265720, 442867, 620014, 797161, 1328602, 1860043, 2391484, 3985807
OFFSET
0,2
COMMENTS
Robert Fathauer observed that if the "warp and woof" construction used by Jim Conant in his recursive dissection of a square (see A328078) is applied to a triangle, one obtains the Sierpinski gasket.
The present sequence gives the number of regions after the n-th generation of this dissection of a triangle.
REFERENCES
Robert Fathauer, Email to N. J. A. Sloane, Oct 14 2019.
FORMULA
From Colin Barker, Nov 27 2019: (Start)
G.f.: (1 + x + x^2 - 2*x^3) / ((1 - x)*(1 - 3*x^3)).
a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) for n>3.
(End)
MAPLE
f:=proc(n) option remember;
if n<=2 then n+1 else 3*f(n-3)+1; fi; end;
[seq(f(n), n=0..50)];
PROG
(PARI) Vec((1 + x + x^2 - 2*x^3) / ((1 - x)*(1 - 3*x^3)) + O(x^40)) \\ Colin Barker, Nov 27 2019
CROSSREFS
A mixture of A003462, A060816, and A237930. Cf. A328078.
Sequence in context: A008824 A261616 A333615 * A081942 A228588 A189720
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 27 2019
STATUS
approved