The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A333200 Rectangular array read by antidiagonals: row n shows the primes p(k) such that p(k) = p(k-1) + 2n, with 2 prefixed to row 1. 2
 2, 3, 11, 5, 17, 29, 7, 23, 37, 97, 13, 41, 53, 367, 149, 19, 47, 59, 397, 191, 211, 31, 71, 67, 409, 251, 223, 127, 43, 83, 79, 457, 293, 479, 307, 1847, 61, 101, 89, 487, 347, 521, 331, 1949, 541, 73, 107, 137, 499, 419, 631, 787, 2129, 1087, 907, 103, 113 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Every prime occurs exactly once. Row 1: A001632, except for initial term Row 2: A046132 Row 3: A031925 Row 4: A031927 Row 5: A031929 Column 1: A006512, beginning with 5,7,13 LINKS EXAMPLE Northwest corner:     2   3     5    7   13   19   31   43   61   73  103    11   17   23   41   47   71   83  101  107  113  131    29   37   53   59   67   79   89  137  157  163  173    97  367  397  409  457  487  499  691  709  727  751   149  191  251  293  347  419  431  557  587  641  701 MATHEMATICA z = 2700; p = Prime[Range[z]]; r[n_] := Select[Range[z], p[[#]] - p[[# - 1]] == 2 n &]; r[1] = Join[{1, 2}, r[1]]; TableForm[Table[Prime[r[n]], {n, 1, 18}]]  (* A333200, array *) TableForm[Table[r[n], {n, 1, 18}]] (* A333201, array *) Table[Prime[r[n - k + 1][[k]]], {n, 12}, {k, n, 1, -1}] // Flatten (* A333200, sequence *) Table[r[n - k + 1][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* A333201, sequence *) CROSSREFS Cf. A333201, A000040, A001632, A006512. Sequence in context: A039654 A075240 A347358 * A229607 A137332 A292473 Adjacent sequences:  A333197 A333198 A333199 * A333201 A333202 A333203 KEYWORD nonn,tabl AUTHOR Clark Kimberling, May 09 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 18:51 EDT 2021. Contains 347659 sequences. (Running on oeis4.)