login
A229607
Array: each row starts with the least prime not in a previous row, and each prime p in a row is followed by the greatest prime < 2*p.
4
2, 3, 11, 5, 19, 17, 7, 37, 31, 29, 13, 73, 61, 53, 41, 23, 139, 113, 103, 79, 47, 43, 277, 223, 199, 157, 89, 59, 83, 547, 443, 397, 313, 173, 113, 67, 163, 1093, 883, 787, 619, 337, 223, 131, 71, 317, 2179, 1759, 1571, 1237, 673, 443, 257, 139, 97, 631
OFFSET
1,1
COMMENTS
Conjectures: (row 1) = A006992, (column 1) = A104272, and for each row r(k), the limit of r(k)/2^k exists. For rows 1 to 4, the respective limits are 0.303976..., 4.249137..., 6.857407..., 12.235210... .
EXAMPLE
Northwest corner:
2, 3, 5, 7, 13, 23, 43, 83, ...
11, 19, 37, 73, 139, 277, 547, 1093, ...
17, 31, 61, 113, 223, 443, 883, 1759, ...
29, 53, 103, 199, 397, 787, 1571, 3137, ...
41, 79, 157, 313, 619, 1237, 2473, 4943, ...
47, 89, 173, 337, 673, 1327, 2647, 5281, ...
MATHEMATICA
seqL = 14; arr1[1] = {2}; Do[AppendTo[arr1[1], NextPrime[2*Last[arr1[1]], -1]], {seqL}]; Do[tmp = Union[Flatten[Map[arr1, Range[z]]]]; arr1[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr1[z], NextPrime[2*Last[arr1[z]], -1]], {seqL}], {z, 2, 12}]; m = Map[arr1, Range[12]]; m // TableForm
t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Sep 26 2013
EXTENSIONS
Incorrect comment deleted by Peter Munn, Aug 15 2017
STATUS
approved