The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229608 Square array read by antidiagonals downwards: each row starts with the least prime not in a previous row, and each prime p in a row is followed by the least prime > 2*p. 5
 2, 5, 3, 11, 7, 13, 23, 17, 29, 19, 47, 37, 59, 41, 31, 97, 79, 127, 83, 67, 43, 197, 163, 257, 167, 137, 89, 53, 397, 331, 521, 337, 277, 179, 107, 61, 797, 673, 1049, 677, 557, 359, 223, 127, 71, 1597, 1361, 2099, 1361, 1117, 719, 449, 257, 149, 73, 3203 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjectures: (row 1) = A055496, (column 1) = A193507, and for each row r(k), the limit of r(k)/2^k exists. For rows 1 to 4, the respective limits are 1.569985..., 2.677285..., 8.230592..., 10.709142...; see Franklin T. Adams-Watters's comment at A055496. The above conjecture row 1 = A055496 is true; additionally, row 2 = A065545; row 3 = A065546; the first 5 terms of row 6 are a contiguous subsequence of A064934; and column 1 = A194598. - Bob Selcoe, Oct 27 2015; corrected by Peter Munn, Jul 30 2017 The conjecture for column 1 is true iff A194598 and A193507 are equivalent. Is this the case? - Bob Selcoe, Oct 29 2015 Column 1 diverges from A193507 at A(14,1) = 113, a prime not in A193507. 113 is in column 1 as it does not follow a prime in a row: 107 follows 53 and 127 follows 59, the next prime after 53. - Peter Munn, Jul 30 2017 LINKS EXAMPLE Northwest corner: 2 5 11 23 47 97 197 3 7 17 37 79 163 331 13 29 59 127 257 521 1049 19 41 83 167 337 677 1361 31 67 137 277 557 1117 2237 43 89 179 359 719 1439 2879 53 107 223 449 907 1823 3659 MATHEMATICA seqL = 14; arr2[1] = {2}; Do[AppendTo[arr2[1], NextPrime[2*Last[arr2[1]]]], {seqL}]; Do[tmp = Union[Flatten[Map[arr2, Range[z]]]]; arr2[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr2[z], NextPrime[2*Last[arr2[z]]]], {seqL}], {z, 2, 12}]; m = Map[arr2, Range[12]]; m // TableForm t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *) CROSSREFS Cf. A055496, A193507, A229607, A229609, A229610. Cf. A065545, A065546, A064934, A194598. Sequence in context: A221183 A178174 A094744 * A185061 A129198 A122442 Adjacent sequences: A229605 A229606 A229607 * A229609 A229610 A229611 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Sep 26 2013 EXTENSIONS Incorrect comment deleted and example extended by Peter Munn, Jul 30 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 14:50 EDT 2023. Contains 361595 sequences. (Running on oeis4.)