login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333192
Number of compositions of n with strictly increasing run-lengths.
5
1, 1, 2, 2, 4, 5, 7, 10, 14, 16, 24, 31, 37, 51, 67, 76, 103, 129, 158, 199, 242, 293, 370, 450, 538, 652, 799, 953, 1147, 1376, 1635, 1956, 2322, 2757, 3271, 3845, 4539, 5336, 6282, 7366, 8589, 10046, 11735, 13647, 15858, 18442, 21354, 24716, 28630, 32985
OFFSET
0,3
COMMENTS
A composition of n is a finite sequence of positive integers summing to n.
LINKS
EXAMPLE
The a(1) = 1 through a(8) = 14 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (122) (33) (133) (44)
(211) (311) (222) (322) (233)
(1111) (2111) (411) (511) (422)
(11111) (3111) (1222) (611)
(21111) (4111) (2222)
(111111) (22111) (5111)
(31111) (11222)
(211111) (41111)
(1111111) (122111)
(221111)
(311111)
(2111111)
(11111111)
For example, the composition (1,2,2,1,1,1) has run-lengths (1,2,3), so is counted under a(8).
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Less@@Length/@Split[#]&]], {n, 0, 15}]
b[n_, lst_, v_] := b[n, lst, v] = If[n == 0, 1, If[n <= lst, 0, Sum[If[k == v, 0, b[n - k pz, pz, k]], {pz, lst + 1, n}, {k, Floor[n/pz]}]]]; a[n_] := b[n, 0, 0]; a /@ Range[0, 50] (* Giovanni Resta, May 18 2020 *)
CROSSREFS
The case of partitions is A100471.
The non-strict version is A332836.
Strictly increasing compositions are A000009.
Unimodal compositions are A001523.
Strict compositions are A032020.
Partitions with strictly increasing run-lengths are A100471.
Partitions with strictly decreasing run-lengths are A100881.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are unimodal are A332726.
Compositions with strictly increasing or decreasing run-lengths are A333191.
Numbers with strictly increasing prime multiplicities are A334965.
Sequence in context: A362610 A363260 A195012 * A323092 A238594 A350837
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 17 2020
EXTENSIONS
Terms a(26) and beyond from Giovanni Resta, May 18 2020
STATUS
approved