The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A329744 Triangle read by rows where T(n,k) is the number of compositions of n > 0 with runs-resistance k, 0 <= k <= n - 1. 55
 1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 1, 1, 6, 6, 2, 1, 3, 15, 9, 4, 0, 1, 1, 22, 22, 16, 2, 0, 1, 3, 41, 38, 37, 8, 0, 0, 1, 2, 72, 69, 86, 26, 0, 0, 0, 1, 3, 129, 124, 175, 78, 2, 0, 0, 0, 1, 1, 213, 226, 367, 202, 14, 0, 0, 0, 0, 1, 5, 395, 376, 750, 469, 52, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS A composition of n is a finite sequence of positive integers with sum n. For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton. LINKS Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003. EXAMPLE Triangle begins:    1    1   1    1   1   2    1   2   3   2    1   1   6   6   2    1   3  15   9   4   0    1   1  22  22  16   2   0    1   3  41  38  37   8   0   0    1   2  72  69  86  26   0   0   0    1   3 129 124 175  78   2   0   0   0    1   1 213 226 367 202  14   0   0   0   0    1   5 395 376 750 469  52   0   0   0   0   0 Row n = 6 counts the following compositions:   (6)  (33)      (15)    (114)    (1131)        (222)     (24)    (411)    (1311)        (111111)  (42)    (1113)   (11121)                  (51)    (1221)   (12111)                  (123)   (2112)                  (132)   (3111)                  (141)   (11112)                  (213)   (11211)                  (231)   (21111)                  (312)                  (321)                  (1122)                  (1212)                  (2121)                  (2211) MATHEMATICA runsres[q_]:=Length[NestWhileList[Length/@Split[#]&, q, Length[#]>1&]]-1; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], runsres[#]==k&]], {n, 10}, {k, 0, n-1}] CROSSREFS Row sums are A000079. Column k = 1 is A032741. Column k = 2 is A329745. Column k = n - 2 is A329743. The version for partitions is A329746. The version with rows reversed is A329750. Cf. A000740, A008965, A098504, A242882, A318928, A329747. Sequence in context: A243919 A231775 A128065 * A277889 A018194 A338630 Adjacent sequences:  A329741 A329742 A329743 * A329745 A329746 A329747 KEYWORD nonn,tabl AUTHOR Gus Wiseman, Nov 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 11 16:45 EDT 2021. Contains 343804 sequences. (Running on oeis4.)