login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332218
Numbers k such that A332221(k) = A156552(sigma(k)) is 2*{an odd square}.
3
2, 162, 441, 2704, 4225, 275194921
OFFSET
1,1
COMMENTS
Any even term of A332216 must occur also in this sequence.
EXAMPLE
a(n) -> sigma(a(n)) -> A156552(sigma(a(n)))
2 = 2^1 * 1^2 -> 3 = 3^1 -> 2 = 2^1 * 1^1,
162 = 2^1 * 3^4 -> 363 = 3^1 * 11^2 -> 98 = 2^1 * 7^2,
441 = 3^2 * 7^2 -> 741 = 3^1 * 13^1 * 19^1 -> 578 = 2^1 * 17^2,
2704 = 2^4 * 13^2 -> 5673 = 3^1 * 31^1 * 61^1 -> 526338 = 2^1 * 3^6 * 19^2,
4225 = 5^2 * 13^2 -> 5673 = 3^1 * 31^1 * 61^1 -> 526338 = 2^1 * 3^6 * 19^2,
and
275194921 = 53^2 * 313^2 -> 281384229 = 3^1 * 7^1 * 181^2 * 409^1 -> 9671406556943421676716050 = 2^1 * 5^2 * 7^2 * 62829235873^2.
MATHEMATICA
Select[Range@ 5000, And[IntegerQ[#], OddQ[#]] &@ Sqrt[#/2] &@ Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ DivisorSigma[1, #]]] &] (* Michael De Vlieger, Feb 12 2020 *)
PROG
(PARI)
\\ Needs also code from A156552:
istosq(n) = ((1==valuation(n, 2))&&issquare(n/2));
for(n=1, 2^25, if(istosq(A156552(sigma(n*n))), print1(n*n, ", ")); if(istosq(A156552(sigma(2*n*n))), print1(2*n*n, ", ")));
CROSSREFS
Subsequence of A332217A067051A028982.
Sequence in context: A272244 A178575 A069580 * A202107 A300363 A109420
KEYWORD
nonn,more
AUTHOR
Antti Karttunen, Feb 11 2020
STATUS
approved