The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202107 n^4*(n+1)^4/8. 1
 2, 162, 2592, 20000, 101250, 388962, 1229312, 3359232, 8201250, 18301250, 37949472, 74030112, 137149922, 243101250, 414720000, 684204032, 1095962562, 1710072162, 2606420000, 3889620000, 5694792642, 8194304162, 11605565952, 16200000000, 22313281250, 30356972802 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A relation between fourth powers and the sum of fifth and seventh powers. See the first formula, which is from Beiler. REFERENCES Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966, p. 161. LINKS Temple Rice Hollcroft, On sums of powers of n consecutive integers, Bulletin of the American Mathematical Society 59 (1953), nr. 6, p. 526 (574t). Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1) FORMULA a(n) = 2*sum(k, k=1..n)^4 = sum(k^5 + k^7, k=1..n). a(n) = 2*A059977(n-1). a(n) = A000539(n) + A000541(n). G.f. -2*x*(1+72*x+603*x^2+1168*x^3+603*x^4+72*x^5+x^6) / (x-1)^9. - R. J. Mathar, Dec 13 2011 a(n) = 2*(A000217(n)^4). - Zak Seidov, Jan 21 2012 MAPLE A202107:=n->(n^4)*(n+1)^4/8; seq(A202107(n), n=1..100); # Wesley Ivan Hurt, Nov 12 2013 MATHEMATICA Table[n^4 (n+1)^4/8, {n, 100}] (* Wesley Ivan Hurt, Nov 12 2013 *) CROSSREFS Cf. A000217, A000539, A000541, A059977. Sequence in context: A178575 A069580 A332218 * A300363 A109420 A162904 Adjacent sequences:  A202104 A202105 A202106 * A202108 A202109 A202110 KEYWORD nonn,easy AUTHOR Martin Renner, Dec 11 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 23:25 EDT 2021. Contains 346273 sequences. (Running on oeis4.)