login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332216
Fixed points of A332221: Numbers k such that A156552(sigma(k)) is equal to k.
3
2, 3, 5, 7, 11, 19, 23, 31, 47, 55, 79, 87, 127, 191, 383, 1279, 5119, 6143, 8191, 20479, 81919, 131071, 524287, 786431, 1310719, 2147483647
OFFSET
1,1
COMMENTS
Equally, numbers k such that sigma(k) is equal to A005940(1+k).
The primes in this sequence are obtained by subtracting 1 from those terms of A029747 that are one more than a prime.
Questions: Are there other composite terms than 55 and 87? Are there other even terms than 2? (All such even terms should also occur in A332218).
MATHEMATICA
Select[Range[10^5], DivisorSigma[1, #] == Block[{p = Partition[Split[Join[IntegerDigits[#, 2], {2}]], 2], q}, Times @@ Flatten[Table[q = Take[p, -i]; Prime[Count[Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}]]] &] (* Michael De Vlieger, Feb 12 2020, after Robert G. Wilson v at A005940 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Antti Karttunen, Feb 10 2020
STATUS
approved