|
|
A332146
|
|
a(n) = 4*(10^(2*n+1)-1)/9 + 2*10^n.
|
|
1
|
|
|
6, 464, 44644, 4446444, 444464444, 44444644444, 4444446444444, 444444464444444, 44444444644444444, 4444444446444444444, 444444444464444444444, 44444444444644444444444, 4444444444446444444444444, 444444444444464444444444444, 44444444444444644444444444444, 4444444444444446444444444444444
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (6 - 202*x - 200*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
|
|
MAPLE
|
A332146 := n -> 4*(10^(2*n+1)-1)/9+2*10^n;
|
|
MATHEMATICA
|
Array[4 (10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
|
|
PROG
|
(PARI) apply( {A332146(n)=10^(n*2+1)\9*4+2*10^n}, [0..15])
(Python) def A332146(n): return 10**(n*2+1)//9*4+2*10**n
|
|
CROSSREFS
|
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332116 .. A332196 (variants with different repeated digit 2, ..., 9).
Cf. A332140 .. A332149 (variants with different middle digit 0, ..., 9).
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|