login
A332146
a(n) = 4*(10^(2*n+1)-1)/9 + 2*10^n.
1
6, 464, 44644, 4446444, 444464444, 44444644444, 4444446444444, 444444464444444, 44444444644444444, 4444444446444444444, 444444444464444444444, 44444444444644444444444, 4444444444446444444444444, 444444444444464444444444444, 44444444444444644444444444444, 4444444444444446444444444444444
OFFSET
0,1
FORMULA
a(n) = 4*A138148(n) + 6*10^n = A002278(2n+1) + 2*10^n = 2*A332123(n).
G.f.: (6 - 202*x - 200*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332146 := n -> 4*(10^(2*n+1)-1)/9+2*10^n;
MATHEMATICA
Array[4 (10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
PROG
(PARI) apply( {A332146(n)=10^(n*2+1)\9*4+2*10^n}, [0..15])
(Python) def A332146(n): return 10**(n*2+1)//9*4+2*10**n
CROSSREFS
Cf. A002275 (repunits R_n = (10^n-1)/9), A002278 (4*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332116 .. A332196 (variants with different repeated digit 2, ..., 9).
Cf. A332140 .. A332149 (variants with different middle digit 0, ..., 9).
Sequence in context: A267082 A051735 A024084 * A132590 A112945 A220865
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 09 2020
STATUS
approved