login
A332115
a(n) = (10^(2n+1)-1)/9 + 4*10^n.
6
5, 151, 11511, 1115111, 111151111, 11111511111, 1111115111111, 111111151111111, 11111111511111111, 1111111115111111111, 111111111151111111111, 11111111111511111111111, 1111111111115111111111111, 111111111111151111111111111, 11111111111111511111111111111, 1111111111111115111111111111111
OFFSET
0,1
COMMENTS
See A107125 = {0, 1, 7, 45, 115, 681, 1248, ...} for the indices of primes.
LINKS
Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
Patrick De Geest, Palindromic Wing Primes: (1)5(1), updated: June 25, 2017.
Makoto Kamada, Factorization of 11...11511...11, updated Dec 11 2018.
FORMULA
a(n) = A138148(n) + 5*10^n = A002275(2n+1) + 4*10^n.
G.f.: (5 - 404*x + 300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332115 := n -> (10^(2*n+1)-1)/9+4*10^n;
MATHEMATICA
Array[(10^(2 # + 1)-1)/9 + 4*10^# &, 15, 0]
PROG
(PARI) apply( {A332115(n)=10^(n*2+1)\9+4*10^n}, [0..15])
(Python) def A332115(n): return 10**(n*2+1)//9+4*10**n
CROSSREFS
Cf. (A077783-1)/2 = A107125: indices of primes; A331868 & A331869 (non-palindromic variants).
Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332125 .. A332195 (variants with different repeated digit 2, ..., 9).
Cf. A332112 .. A332119 (variants with different middle digit 2, ..., 9).
Sequence in context: A181979 A258486 A082623 * A262655 A075598 A214691
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 09 2020
STATUS
approved