login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214691
G.f.: A(x) = Sum_{n>=0} x^n * Product_{k=1..n} (2^(2*k-1) - 1) / (1 + 2^(2*k-1)*x).
1
1, 1, 5, 151, 19025, 9702751, 19851828545, 162586475783551, 5327308465523832065, 698250320576208668759551, 366082867573618138109269955585, 767730685732013278335855487355082751, 6440190236715680978727827356359771295535105
OFFSET
0,3
COMMENTS
A variant of A005014. Equals row sums (unsigned) of triangle A214690.
FORMULA
a(n) = 2*(4^(n-1) - 1)*a(n-1) - (-1)^n for n>0 with a(0)=1.
PROG
(PARI) {a(n)=if(n==0, 1, 2*(4^(n-1)-1)*a(n-1) - (-1)^n)}
(PARI) {a(n)=local(A=x); A=sum(m=0, n, x^m*prod(j=1, m, (2^(2*j-1)-1)/(1+x*2^(2*j-1))+x*O(x^n))); polcoeff(A, n, x)}
for(n=0, 20, print1(a(n), ", "));
CROSSREFS
Cf. A005014 (variant), A214690.
Sequence in context: A332115 A262655 A075598 * A261822 A105230 A222768
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 26 2012
STATUS
approved