login
A331928
Number of compositions (ordered partitions) of n into distinct proper divisors of n.
2
1, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 30, 0, 24, 0, 0, 0, 894, 0, 0, 0, 120, 0, 150, 0, 0, 0, 0, 0, 1134, 0, 0, 0, 864, 0, 30, 0, 0, 0, 0, 0, 11934, 0, 0, 0, 0, 0, 150, 0, 840, 0, 0, 0, 129438, 0, 0, 0, 0, 0, 126, 0, 0, 0, 0
OFFSET
0,7
FORMULA
a(n) = A331927(n) - 1 for n > 0.
EXAMPLE
a(6) = 6 because we have [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 3, 2] and [1, 2, 3].
PROG
(PARI) a(n)={if(n==0, 1, my(v=divisors(n)); subst(serlaplace((0*y) + polcoef(prod(i=1, #v-1, 1 + y*x^v[i] + O(x*x^n)), n)), y, 1))} \\ Andrew Howroyd, Feb 01 2020
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 01 2020
STATUS
approved