login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331573
The bottom entry in the forward difference table of the Euler totient function phi for 1..n.
1
1, 0, 1, -2, 5, -14, 39, -102, 247, -558, 1197, -2494, 5167, -10850, 23311, -51132, 113333, -250694, 547871, -1175998, 2475153, -5117486, 10439895, -21142030, 42777735, -86960284, 178221401, -368541508, 767762191, -1606535062, 3365499467, -7038925364, 14671422797, -30450115592
OFFSET
1,4
COMMENTS
a(2n) is a nonpositive even number while a(2n-1) is an odd positive number.
Abs(a(n)) < abs(a(n+1)) for 1 < n < 8000.
FORMULA
a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n-1,k-1)*phi(k). - Ridouane Oudra, Aug 21 2021
a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n,k)*A002088(k). - Ridouane Oudra, Oct 02 2022
EXAMPLE
a(8) = -102 because:
1 1 2 2 4 2 6 4 (first 8 terms of A000010)
0 1 0 2 -2 4 -2 (first 7 terms of A057000)
1 -1 2 -4 6 6
-2 3 -6 10 -12
5 -9 16 -22
-14 25 -38
39 -63
-102
The first principal right descending diagonal is this sequence.
MATHEMATICA
f[n_] := Differences[ Array[ EulerPhi, n], n -1][[1]]; Array[f, 34] (* or *)
nmx = 34; Join[ {1}, Differences[ Array[ EulerPhi, nmx], #][[1]] & /@ Range[nmx - 1]]
CROSSREFS
KEYWORD
sign
AUTHOR
Robert G. Wilson v, Jan 20 2020
STATUS
approved