login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057000
a(n) = phi(n+1) - phi(n).
6
0, 1, 0, 2, -2, 4, -2, 2, -2, 6, -6, 8, -6, 2, 0, 8, -10, 12, -10, 4, -2, 12, -14, 12, -8, 6, -6, 16, -20, 22, -14, 4, -4, 8, -12, 24, -18, 6, -8, 24, -28, 30, -22, 4, -2, 24, -30, 26, -22, 12, -8, 28, -34, 22, -16, 12, -8, 30, -42, 44, -30, 6, -4, 16, -28, 46, -34, 12, -20, 46, -46, 48, -36, 4
OFFSET
1,4
LINKS
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
FORMULA
G.f.: -1 + (1 - x)*Sum_{k>=1} mu(k)*x^(k-1)/(1 - x^k)^2. - Ilya Gutkovskiy, Jan 29 2017
MAPLE
A057000 := proc(n)
numtheory[phi](n+1)-numtheory[phi](n) ;
end proc:
seq(A057000(n), n=1..40) ; # R. J. Mathar, May 10 2023
MATHEMATICA
Table[EulerPhi[n + 1] - EulerPhi[n], {n, 100}] (* Vincenzo Librandi, Sep 30 2013 *)
PROG
(Magma) [(EulerPhi(n+1) - EulerPhi(n)): n in [1..100]]; // Vincenzo Librandi, Sep 30 2013
(PARI) a(n) = eulerphi(n+1) - eulerphi(n); \\ Michel Marcus, Jan 29 2017
CROSSREFS
Sequence in context: A077636 A215847 A360460 * A348044 A328400 A239676
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Sep 09 2000
STATUS
approved