OFFSET
1,3
COMMENTS
Note that if n is prime then a(n) = n - 1.
Note that if n is a power of 2 then a(n) = 1.
First differs from A187203 at a(14). - Omar E. Pol, May 14 2016
From David A. Corneth, May 20 2016: (Start)
The bottom of the difference table of the divisors of n can be expressed in terms of the divisors of n and use of Pascal's triangle. Suppose a, b, c, d and e are the divisors of n. Then the difference table is as follows (rotated for ease of reading):
a
. . b-a
b . . . . c-2b+a
. . c-b . . . . . d-3c+3b-a
c . . . . d-2c+b . . . . . . e-4d+6c-4b+a
. . d-c . . . . . e-3d+3c-b
d . . . . e-2d+c
. . e-d
e
From here we can see Pascal's triangle occurring. Induction can be used to show that it's the case in general.
(End)
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = Sum_{k=0..d-1} (-1)^k*binomial(d-1,k)*D[d-k], where D is a sorted list of the d = A000005(n) divisors of n. - N. J. A. Sloane, May 01 2016
a(2^k) = 1.
EXAMPLE
a(18) = 12 because the divisors of 18 are 1, 2, 3, 6, 9, 18, and the difference triangle of the divisors is:
1 . 2 . 3 . 6 . 9 . 18
. 1 . 1 . 3 . 3 . 9
. . 0 . 2 . 0 . 6
. . . 2 .-2 . 6
. . . .-4 . 8
. . . . . 12
with bottom entry a(18) = 12.
Note that A187203(18) = 4.
MAPLE
f:=proc(n) local k, d, lis; lis:=divisors(n); d:=nops(lis);
add( (-1)^k*binomial(d-1, k)*lis[d-k], k=0..d-1); end;
[seq(f(n), n=1..100)]; # N. J. A. Sloane, May 01 2016
MATHEMATICA
Table[d = Divisors[n]; Differences[d, Length[d] - 1][[1]], {n, 100}] (* T. D. Noe, Aug 01 2011 *)
PROG
(PARI) A187202(n)={ for(i=2, #n=divisors(n), n=vecextract(n, "^1")-vecextract(n, "^-1")); n[1]} \\ M. F. Hasler, Aug 01 2011
(Haskell)
a187202 = head . head . dropWhile ((> 1) . length) . iterate diff . divs
where divs n = filter ((== 0) . mod n) [1..n]
diff xs = zipWith (-) (tail xs) xs
-- Reinhard Zumkeller, Aug 02 2011
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Omar E. Pol, Aug 01 2011
EXTENSIONS
Edited by N. J. A. Sloane, May 01 2016
STATUS
approved