login
A187204
Numbers n such that the bottom entry in the difference table of the divisors of n is 0.
9
10, 171, 1947, 2619, 265105, 478834027, 974622397, 11373118351
OFFSET
1,1
COMMENTS
Numbers n such that A187202(n) = 0.
11373118351 and 1756410942451 are also in the sequence (not necessarily the next two terms). - Donovan Johnson, Aug 05 2011
For every integer m, does there exist a prime p such that abs(A187202(r * m)) > abs(A187202(q * m)) and sign(A187202(r * m)) = sign(A187202(q * m)), and q >= p is prime and prime r > q? - David A. Corneth, Apr 08 2017
No other terms up to 3*10^9. - Michel Marcus, Apr 09 2017
a(9) > 6*10^10. 138662735650982521 and 168248347462416481 are also terms. - Giovanni Resta, Apr 12 2017
EXAMPLE
10 has divisors 1, 2, 5, 10. The third difference of these numbers is 0. This is the only possible number having 2 prime factors of the form p*q. The other terms have factorization 171 = 3^2*19, 1947 = 3*11*59, 2619 = 3^3*97, and 265105 = 5*37*1433.
MATHEMATICA
t = {}; Do[d = Divisors[n]; If[Differences[d, Length[d]-1] == {0}, AppendTo[t, n]], {n, 10^4}]; t (* T. D. Noe, Aug 01 2011 *)
PROG
(Haskell)
import Data.List (elemIndices)
a187204 n = a187204_list !! (n-1)
a187204_list = map (+ 1) $ elemIndices 0 $ map a187202 [1..]
-- Reinhard Zumkeller, Aug 02 2011
(PARI) is(n) = my(d=divisors(n)); !sum(i=1, #d, binomial(#d-1, i-1)*d[i]*(-1)^i) \\ David A. Corneth, Apr 08 2017
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Omar E. Pol, Aug 01 2011
EXTENSIONS
Suggested by T. D. Noe in the "history" of A187203.
a(6)-a(7) from Donovan Johnson, Aug 03 2011
a(8) from Giovanni Resta, Apr 11 2017
STATUS
approved