The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A330603 a(n) = Sum_{k>=0} (k - n)^n / 2^(k + 1). 0
 1, 0, 3, -14, 155, -1834, 27867, -492246, 10068459, -232990178, 6025718963, -172182404734, 5387697769467, -183214963001082, 6728091949444491, -265348057242998822, 11185888456798395563, -501937946696294628946, 23886968118494957119011, -1201674025637823778926414 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The n-th term of the n-th inverse binomial transform of A000670. LINKS FORMULA a(n) = n! * [x^n] exp(-n*x) / (2 - exp(x)). a(n) = Sum_{k=0..n} binomial(n,k) * (-n)^(n - k) * A000670(k). a(n) ~ (-1)^n * n^n / (2 - exp(-1)). - Vaclav Kotesovec, Dec 19 2019 MATHEMATICA Table[Sum[(k - n)^n/2^(k + 1), {k, 0, Infinity}], {n, 0, 19}] Table[HurwitzLerchPhi[1/2, -n, -n]/2, {n, 0, 19}] Table[n! SeriesCoefficient[Exp[-n x]/(2 - Exp[x]), {x, 0, n}], {n, 0, 19}] CROSSREFS Cf. A000670, A052841, A290219, A292916. Sequence in context: A319361 A002966 A075654 * A261006 A185238 A090897 Adjacent sequences:  A330600 A330601 A330602 * A330604 A330605 A330606 KEYWORD sign AUTHOR Ilya Gutkovskiy, Dec 19 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 08:07 EDT 2021. Contains 343940 sequences. (Running on oeis4.)