login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330600
Primes p such that the sum of (p mod d) for nonzero digits d of p is prime.
1
17, 23, 29, 37, 53, 67, 83, 97, 107, 113, 127, 131, 139, 157, 163, 167, 173, 181, 191, 193, 199, 223, 227, 233, 241, 251, 281, 283, 307, 311, 313, 331, 337, 353, 367, 379, 383, 397, 409, 421, 431, 433, 439, 457, 463, 467, 499, 503, 521, 523, 541, 569, 571, 587, 593, 613, 631, 643, 647, 659, 661
OFFSET
1,1
LINKS
EXAMPLE
a(10) = 113 is in the sequence because 113 is prime and (113 mod 1) + (113 mod 1) + (113 mod 3) = 2 is prime.
MAPLE
filter:= proc(n) local t;
isprime(n) and isprime(add(n mod t, t = subs(0=NULL, convert(n, base, 10))))
end proc:
select(filter, [seq(i, i=3..1000, 2)]);
MATHEMATICA
smdQ[n_]:=PrimeQ[Total[Mod[n, Select[IntegerDigits[n], #!=0&]]]]; Select[ Prime[ Range[150]], smdQ] (* Harvey P. Dale, Jun 20 2021 *)
PROG
(Magma) a:=[]; for p in PrimesUpTo(700) do v:=[]; for i in [1..#Intseq(p)] do if Intseq(p)[i] ne 0 then Append(~v, Intseq(p)[i]); end if; end for; if IsPrime(&+[p mod v[u]: u in [1..#v]]) then Append(~a, p); end if; end for; a; // Marius A. Burtea, Dec 19 2019
CROSSREFS
Sequence in context: A068581 A166864 A137670 * A217044 A145484 A080830
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Dec 19 2019
STATUS
approved