login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330376
Irregular triangle read by rows: T(n,k) is the total number of parts in all partitions of n with Durfee square of size k (n>=1; 1<=k<=floor(sqrt(n))).
1
1, 3, 6, 10, 2, 15, 5, 21, 14, 28, 26, 36, 50, 45, 80, 3, 55, 130, 7, 66, 190, 19, 78, 280, 41, 91, 385, 80, 105, 532, 143, 120, 700, 248, 136, 924, 399, 4, 153, 1176, 627, 9, 171, 1500, 949, 24, 190, 1860, 1397, 51, 210, 2310, 2003, 107, 231, 2805, 2823, 193
OFFSET
1,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1799 (rows 1..200)
Eric Weisstein's World of Mathematics, Durfee Square
EXAMPLE
Triangle begins:
1;
3;
6;
10, 2;
15, 5;
21, 14;
28, 26;
36, 50;
45, 80, 3;
PROG
(PARI) \\ by enumeration over partitions.
ds(p)={for(i=2, #p, if(p[#p+1-i]<i, return(i-1))); #p}
row(n)={my(v=vector(sqrtint(n))); forpart(p=n, v[ds(p)] += #p); v}
{ for(n=1, 10, print(row(n))) } \\ Andrew Howroyd, Feb 02 2022
(PARI) \\ by generating function.
P(n, k, y)={1/prod(j=1, k, 1 - y*x^j + O(x*x^n))}
T(n, k)={my(r=n-k^2); if(r<0, 0, subst(deriv(polcoef(y^k*P(r, k, 1)*P(r, k, y), r)), y, 1))}
{ for(n=1, 10, print(vector(sqrtint(n), k, T(n, k)))) } \\ Andrew Howroyd, Feb 02 2022
CROSSREFS
Row sums give A006128, n >= 1.
Column 1 gives A000217, n >= 1.
Cf. A330369.
Sequence in context: A194047 A194035 A194049 * A120028 A333611 A329153
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Dec 22 2019
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, Feb 02 2022
STATUS
approved