login
A114089
Total number of parts in the tails below the Durfee squares of all partitions of n.
5
0, 1, 3, 6, 11, 19, 31, 50, 76, 116, 169, 247, 349, 494, 682, 941, 1274, 1724, 2296, 3054, 4014, 5263, 6833, 8854, 11373, 14578, 18556, 23561, 29736, 37447, 46903, 58619, 72925, 90518, 111899, 138044, 169665, 208111, 254436, 310456, 377687, 458625
OFFSET
1,3
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
LINKS
FORMULA
a(n) = Sum_{k=0..n-1} k*A114088(n,k).
G.f.: [(d/dt){sum(q^(k^2)/product((1-q^j)(1-tq^j), j=1..k), k=1..infinity)}]_{t=1}.
a(n) = A006128(n) - A115995(n). - Vladeta Jovovic, Feb 18 2006
EXAMPLE
a(4) = 6 because the bottom tails of the five partitions of 4, namely [4], [3,1], [2,2], [2,1,1] and [1,1,1,1], are { }, [1], { }, [1,1] and [1,1,1], respectively, having a total of 6 parts.
MAPLE
g:=sum(z^(k^2)/product((1-z^j)*(1-t*z^j), j=1..k), k=1..10): dgdt1:=simplify(subs(t=1, diff(g, t))): dgdt1ser:=series(dgdt1, z=0, 55): seq(coeff(dgdt1ser, z, n), n=1..45);
# second Maple program:
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> add(j*b(n-j, j), j=1..n) -add(add(b(k, d)*b(n-d^2-k, d),
k=0..n-d^2)*d, d=1..floor(sqrt(n))):
seq(a(n), n=1..70); # Alois P. Heinz, Apr 09 2012
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum[j*b[n-j, j], {j, 1, n}] - Sum[Sum[b[k, d]*b[n-d^2-k, d], {k, 0, n-d^2}]*d, {d, 1, Floor[Sqrt[n]]}]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 12 2006
STATUS
approved