OFFSET
0,3
COMMENTS
Also sum of positive cranks of all partitions of n, n>1; see A064391. - Vladeta Jovovic, Oct 20 2006
This sequence, its author and the author of the above comment were mentioned in the Andrews-Chan-Kim paper, where it is called C_1 (see the remark on page 6). - Omar E. Pol, Apr 06 2012
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..3000
George E. Andrews, Partitions and Durfee Dissection
George E. Andrews, Song Heng Chan, and Byungchan Kim, The odd moments of ranks and cranks
George E. Andrews, Frank G. Garvan, and Jie Liang, Self-conjugate vector partitions and the parity of the spt-function.
Atul Dixit, Bibekananda Maji, Partition implications of a new three parameter q-series identity, arXiv:1806.04424 [math.CO], 2018.
Eric Weisstein's World of Mathematics, Durfee Square.
FORMULA
G.f.: Sum_{k>=1} (k*z^(k^2) / Product_{j=1..k} (1 - z^j)^2 ).
a(n) = Sum_{k=1..floor(sqrt(n))} k*A115994(n,k).
a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)). - Vaclav Kotesovec, Jan 02 2019
EXAMPLE
a(4) = 6 because the partitions [4], [3,1], [2,2], [2,1,1] and [1,1,1,1] of 4 have Durfee squares of sizes 1,1,2,1 and 1, respectively.
MAPLE
g:= add(k*z^(k^2)/mul((1-z^j)^2, j=1..k), k=1..10): gser:=series(g, z=0, 56): seq(coeff(gser, z, n), n=0..52);
# second Maple program:
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> add(add(b(k, d)*b(n-d^2-k, d), k=0..n-d^2)*d, d=1..isqrt(n)):
seq(a(n), n=0..70); # Alois P. Heinz, Apr 09 2012
# Third Maple program, based on Theorem 1 of Andrews-Chan-Kim:
M:=101;
qinf:=mul(1-q^i, i=1..M);
qinf:=series(qinf, q, M);
C1:=add((-1)^(n+1)*q^(n*(n+1)/2)/(1-q^n), n=1..M);
C1:=series(C1/qinf, q, M);
seriestolist(%); # N. J. A. Sloane, Sep 04 2012
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]] ; a[n_] := Sum[ Sum[b[k, d]*b[n - d^2 - k, d], {k, 0, n - d^2}]*d, {d, 1, Sqrt[n]}]; Table [a[n], {n, 0, 70}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
PROG
(PARI) N=66; x='x+O('x^N); concat([0], Vec( sum(n=0, N, n*x^(n^2) / prod(k=1, n, 1-x^k)^2))) \\ Joerg Arndt, Mar 26 2014
(Sage)
[sum(p.frobenius_rank() for p in Partitions(n)) for n in range(45)] # Peter Luschny, Sep 15 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 11 2006
EXTENSIONS
Edited and verified by Franklin T. Adams-Watters, Mar 11 2006
STATUS
approved