login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330082 a(n) = 5*A064038(n). 1
0, 5, 15, 15, 25, 75, 105, 70, 90, 225, 275, 165, 195, 455, 525, 300, 340, 765, 855, 475, 525, 1155, 1265, 690, 750, 1625, 1755, 945, 1015, 2175, 2325, 1240, 1320, 2805, 2975, 1575, 1665, 3515, 3705, 1950, 2050, 4305, 4515, 2365, 2475, 5175, 5405, 2820, 2940 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Main column of a pentagonal spiral for A026741:
25
49 15 31
24 29 15 8 16
47 14 7 5 3 17 33
23 27 13 2 0 1 7 9 17
45 13 6 3 1 4 19 35
22 25 11 5 9 10 18
43 12 23 11 21 37
21 41 20 39 19
a(n) = 5 * A064038(n) from a pentagonal spiral.
Compare to A319127(n) = 6 * A002620(n) in the hexagonal spiral:
22 23 23 22 24
20 12 13 13 12 25
21 10 5 4 6 14 25
21 11 5 1 0 7 15 24
20 11 4 1 0 2 7 15 26
18 10 2 3 3 6 14 27
19 8 9 9 8 16 27
19 18 16 17 17 26
30 28 29 29 28
A319127(n) = 0, 0, 6, 12, 24, 36, 54, 72, 96, ... .
LINKS
FORMULA
a(n) = A026741(A028895(n)).
From Colin Barker, Dec 08 2019: (Start)
G.f.: 5*x*(1 + 4*x^3 + x^6) / ((1 - x)^3*(1 + x^2)^3).
a(n) = 3*a(n-1) - 6*a(n-2) + 10*a(n-3) - 12*a(n-4) + 12*a(n-5) - 10*a(n-6) + 6*a(n-7) - 3*a(n-8) + a(n-9) for n>8.
a(n) = (-5/16 + (5*i)/16)*(((-3-3*i) + (-i)^n + i^(1+n))*n*(1+n)) where i=sqrt(-1).
(End)
PROG
(PARI) concat(0, Vec(5*x*(1 + 4*x^3 + x^6) / ((1 - x)^3*(1 + x^2)^3) + O(x^50))) \\ Colin Barker, Dec 08 2019
CROSSREFS
Sequence in context: A291794 A321775 A166621 * A160275 A200858 A184288
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Dec 01 2019
EXTENSIONS
More terms from Colin Barker, Dec 22 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 10 04:13 EDT 2023. Contains 363187 sequences. (Running on oeis4.)