login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158447
a(n) = 10*n^2 - 1.
3
9, 39, 89, 159, 249, 359, 489, 639, 809, 999, 1209, 1439, 1689, 1959, 2249, 2559, 2889, 3239, 3609, 3999, 4409, 4839, 5289, 5759, 6249, 6759, 7289, 7839, 8409, 8999, 9609, 10239, 10889, 11559, 12249, 12959, 13689, 14439, 15209, 15999, 16809, 17639
OFFSET
1,1
COMMENTS
Sequence found by reading the line from 9, in the direction 9, 39, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: x*(9 + 12*x - x^2)/(1 - x)^3.
a(n) = A033583(n) - 1. - Omar E. Pol, Jul 18 2012
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(10))*cot(Pi/sqrt(10)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(10))*csc(Pi/sqrt(10)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(10))*csc(Pi/sqrt(10)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(10))*sin(Pi/sqrt(5))/sqrt(2). (End)
E.g.f.: exp(x)*(10*x^2 + 10*x - 1) + 1. - Stefano Spezia, Aug 25 2022
MAPLE
A158447:=n->10*n^2-1: seq(A158447(n), n=1..100); # Wesley Ivan Hurt, Apr 26 2017
MATHEMATICA
Table[10n^2-1, {n, 50}]
LinearRecurrence[{3, -3, 1}, {9, 39, 89}, 50] (* Harvey P. Dale, Dec 08 2017 *)
PROG
(Magma) I:=[9, 39, 89]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
(PARI) a(n) = 10*n^2 - 1.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 19 2009
STATUS
approved