login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158444
a(n) = 16*n^2 + 4.
2
20, 68, 148, 260, 404, 580, 788, 1028, 1300, 1604, 1940, 2308, 2708, 3140, 3604, 4100, 4628, 5188, 5780, 6404, 7060, 7748, 8468, 9220, 10004, 10820, 11668, 12548, 13460, 14404, 15380, 16388, 17428, 18500, 19604, 20740, 21908, 23108, 24340, 25604, 26900, 28228
OFFSET
1,1
COMMENTS
The identity (8*n^2 + 1)^2 - (16*n^2 + 4)*(2*n)^2 = 1 can be written as A081585(n)^2 - a(n)*A005843(n)^2 = 1.
Sequence found by reading the line from 20, in the direction 20, 68, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
From Bruno Berselli, Sep 06 2011: (Start)
G.f.: 4*x*(5 + 2*x + x^2)/(1-x)^3.
a(n) = 4*A053755(n). (End)
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/2)*Pi/2 - 1)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/2)*Pi/2)/8. (End)
MATHEMATICA
a[n_] := 16*n^2 + 4; Array[a, 50] (* Amiram Eldar, Mar 05 2023 *)
PROG
(Magma) [16*n^2+4: n in [1..50]];
(PARI) a(n)=16*n^2+4 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 19 2009
EXTENSIONS
Comment rewritten by Bruno Berselli, Sep 06 2011
STATUS
approved