login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327519
Number of factorizations of A305078(n - 1), the n-th connected number, into connected numbers > 1.
0
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 2, 1, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 3, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 2, 7, 1, 1, 4, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 7, 2, 1
OFFSET
1,5
COMMENTS
A number n with prime factorization n = prime(m_1)^s_1 * ... * prime(m_k)^s_k is connected if the simple labeled graph with vertex set {m_1,...,m_k} and edges between any two vertices with a common divisor greater than 1 is connected. Connected numbers are listed in A305078.
EXAMPLE
The a(190) = 8 factorizations of 585 together with the corresponding multiset partitions of {2,2,3,6}:
(3*3*5*13) {{2},{2},{3},{6}}
(3*3*65) {{2},{2},{3,6}}
(3*5*39) {{2},{3},{2,6}}
(3*195) {{2},{2,3,6}}
(5*9*13) {{3},{2,2},{6}}
(5*117) {{3},{2,2,6}}
(9*65) {{2,2},{3,6}}
(585) {{2,2,3,6}}
MATHEMATICA
nn=100;
zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}], GCD@@s[[#]]>1&]}, If[c=={}, s, zsm[Sort[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
facsusing[s_, n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facsusing[Select[s, Divisible[n/d, #]&], n/d], Min@@#>=d&]], {d, Select[s, Divisible[n, #]&]}]];
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
y=Select[Range[nn], Length[zsm[primeMS[#]]]==1&];
Table[Length[facsusing[y, n]], {n, y}]
CROSSREFS
See link for additional cross-references.
Sequence in context: A242442 A163768 A327659 * A287917 A325615 A029434
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 21 2019
STATUS
approved