Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Sep 22 2019 08:05:47
%S 1,1,1,1,2,1,1,1,1,2,1,2,3,1,1,1,2,1,1,1,2,1,2,1,1,4,2,1,1,1,1,5,1,2,
%T 1,2,1,1,1,1,1,2,1,2,4,2,3,1,2,1,2,1,1,4,1,1,1,2,1,1,2,4,1,1,1,2,2,7,
%U 1,1,4,1,1,2,1,2,1,1,1,1,2,2,1,1,7,2,1
%N Number of factorizations of A305078(n - 1), the n-th connected number, into connected numbers > 1.
%C A number n with prime factorization n = prime(m_1)^s_1 * ... * prime(m_k)^s_k is connected if the simple labeled graph with vertex set {m_1,...,m_k} and edges between any two vertices with a common divisor greater than 1 is connected. Connected numbers are listed in A305078.
%H Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a>
%e The a(190) = 8 factorizations of 585 together with the corresponding multiset partitions of {2,2,3,6}:
%e (3*3*5*13) {{2},{2},{3},{6}}
%e (3*3*65) {{2},{2},{3,6}}
%e (3*5*39) {{2},{3},{2,6}}
%e (3*195) {{2},{2,3,6}}
%e (5*9*13) {{3},{2,2},{6}}
%e (5*117) {{3},{2,2,6}}
%e (9*65) {{2,2},{3,6}}
%e (585) {{2,2,3,6}}
%t nn=100;
%t zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
%t facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t y=Select[Range[nn],Length[zsm[primeMS[#]]]==1&];
%t Table[Length[facsusing[y,n]],{n,y}]
%Y See link for additional cross-references.
%Y Cf. A286518, A302569, A304714, A304716, A305078, A305079, A327076.
%K nonn
%O 1,5
%A _Gus Wiseman_, Sep 21 2019