login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327316
Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: p(x,n) = ((x+r)^n - (x+s)^n)/(r - s), where r = 3 and s = 2.
3
1, 5, 2, 19, 15, 3, 65, 76, 30, 4, 211, 325, 190, 50, 5, 665, 1266, 975, 380, 75, 6, 2059, 4655, 4431, 2275, 665, 105, 7, 6305, 16472, 18620, 11816, 4550, 1064, 140, 8, 19171, 56745, 74124, 55860, 26586, 8190, 1596, 180, 9, 58025, 191710, 283725, 247080
OFFSET
1,2
COMMENTS
For every choice of integers r and s, the polynomials p(n,x) form a strong divisibility sequence. Thus, if r, s, and x are integers, then p(x,n) is a strong divisibility sequence. That is, gcd(p(x,h),p(x,k)) = p(x,gcd(h,k)).
EXAMPLE
First seven rows:
1
5 2
19 15 3
65 76 30 4
211 325 190 50 5
665 1266 975 380 75 6
2059 4655 4431 2275 665 105 7
MATHEMATICA
f[x_, n_] := ((x + r)^n - (x + s)^n)/(r - s);
r = 3; s = 2;
Column[Table[Expand[f[x, n]], {n, 1, 5}]]
c[x_, n_] := CoefficientList[Expand[f[x, n]], x]
TableForm[Table[c[x, n], {n, 1, 10}]] (* A327316 array *)
Flatten[Table[c[x, n], {n, 1, 12}]] (* A327316 sequence *)
CROSSREFS
Cf. A001047 (x=0), A005061 (x=1), A005060 (x=2), A005062 (x=3), A081200 (x=1/2).
Sequence in context: A304635 A356330 A306198 * A206582 A276533 A303685
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Nov 01 2019
STATUS
approved