|
|
A206582
|
|
The least number s having exactly n twos in the continued fraction of sqrt(s).
|
|
4
|
|
|
3, 2, 19, 45, 71, 153, 199, 589, 301, 989, 526, 1711, 739, 1633, 631, 3886, 1324, 4897, 2524, 7021, 2374, 4189, 2311, 10033, 3571, 3901, 2326, 8869, 4789, 10873, 6301, 10921, 6451, 11929, 6841, 12709, 7996, 13561, 7351, 19177, 9949, 16969, 12286, 22969, 11341
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Table of n, a(n) for n=0..44.
|
|
MATHEMATICA
|
nn = 50; zeros = nn; t = Table[0, {nn}]; k = 2; While[zeros > 0, If[! IntegerQ[Sqrt[k]], cnt = Count[ContinuedFraction[Sqrt[k]][[2]], 2]; If[cnt <= nn && t[[cnt]] == 0, t[[cnt]] = k; zeros--]]; k++]; Join[{3}, t]
|
|
CROSSREFS
|
Cf. A206578 (n ones), A206583 (n threes), A206584 (n fours), A206585 (n fives).
Sequence in context: A090587 A094554 A223881 * A154262 A154261 A098655
Adjacent sequences: A206579 A206580 A206581 * A206583 A206584 A206585
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
T. D. Noe, Mar 19 2012
|
|
STATUS
|
approved
|
|
|
|