The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206578 The least number with exactly n ones in the continued fraction of its square root. 6
 2, 3, 14, 7, 13, 91, 43, 115, 94, 819, 133, 1075, 211, 1219, 309, 871, 421, 1147, 244, 3427, 478, 2575, 991, 8791, 604, 3799, 886, 5539, 1381, 8851, 1279, 7303, 1561, 19519, 1759, 10339, 1831, 12871, 2038, 13771, 1999, 8611, 1516, 15871, 2731, 20875, 1726 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS It appears that only the odd-numbered terms 3 and 7 are prime; all other primes occur at even-numbered terms 0, 4, 6, 12, 16, 22, 28, 30, 34, ... In terms 0 to 1000, there are 268 primes and 632 semiprimes. LINKS Chai Wah Wu, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe) MATHEMATICA nn = 50; zeros = nn; t = Table[0, {nn}]; k = 2; While[zeros > 0, If[! IntegerQ[Sqrt[k]], cnt = Count[ContinuedFraction[Sqrt[k]][[2]], 1]; If[cnt <= nn && t[[cnt]] == 0, t[[cnt]] = k; zeros--]]; k++]; Join[{2}, t] PROG (Python) from sympy import continued_fraction_periodic def A206578(n): m = 1 while True: s = continued_fraction_periodic(0, 1, m)[-1] if isinstance(s, list) and s.count(1) == n: return m m += 1 # Chai Wah Wu, Jun 12 2017 CROSSREFS Cf. A013647-A013650 (0-3), A020440-A020446 (4-10), A031779-A031868 (11-100). Cf. A206582 (n twos), A206583 (n threes), A206584 (n fours), A206585 (n fives). Sequence in context: A287858 A288648 A287912 * A056435 A244295 A032806 Adjacent sequences: A206575 A206576 A206577 * A206579 A206580 A206581 KEYWORD nonn AUTHOR T. D. Noe, Feb 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 1 14:50 EDT 2023. Contains 361695 sequences. (Running on oeis4.)