login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327248 Squarefree part of A078522(n+1). 0
6, 210, 1785, 60639, 915530, 184030, 14066106, 80753867670, 10973017315470, 372759573255306, 11949006236698685, 86466986871277074, 122261486084598, 43869141307765893, 35803482505852454889891 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also the squarefree part of (A001653(n+1)^2-1)/2 or of A002315(n)^2-1

Walsh shows that the system of simultaneous Pell equations x^2 - d*y^2 = z^2 - 2*d*y^2 = 1 has solutions in positive integers x, y, z if and only if d belongs to this sequence and, under the abc conjecture, this sequences grows exponentially.

LINKS

Table of n, a(n) for n=1..15.

P. G. Walsh, On integer solutions to x^2 - dy^2 = 1, z^2 - 2dy^2 = 1, Acta Arithmetica 82 (1997), 69-76.

FORMULA

a(n) = A007913(A078522(n+1)).

EXAMPLE

a(2) = 210 since A078522(3) = 840 = 210 * 2^2.

PROG

(PARI) a(n)={local(z=1+quadgen(8)); core(imag(z^(2*n+1))^2-1)}

CROSSREFS

Cf. A007913, A001653, A002315, A078522.

Sequence in context: A055193 A346015 A001505 * A084694 A285149 A065945

Adjacent sequences:  A327245 A327246 A327247 * A327249 A327250 A327251

KEYWORD

nonn

AUTHOR

Tomohiro Yamada, Sep 15 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 13:56 EST 2022. Contains 350466 sequences. (Running on oeis4.)