OFFSET
1,1
COMMENTS
Walsh shows that the system of simultaneous Pell equations x^2 - d*y^2 = z^2 - 2*d*y^2 = 1 has solutions in positive integers x, y, z if and only if d belongs to this sequence and, under the abc conjecture, this sequences grows exponentially.
LINKS
P. G. Walsh, On integer solutions to x^2 - dy^2 = 1, z^2 - 2dy^2 = 1, Acta Arithmetica 82 (1997), 69-76.
EXAMPLE
a(2) = 210 since A078522(3) = 840 = 210 * 2^2.
PROG
(PARI) a(n)={local(z=1+quadgen(8)); core(imag(z^(2*n+1))^2-1)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Tomohiro Yamada, Sep 15 2019
EXTENSIONS
Missing a(11) inserted and more terms from Georg Fischer, Mar 02 2023
STATUS
approved