login
A327248
Squarefree part of A078522(n+1).
0
6, 210, 1785, 60639, 915530, 184030, 14066106, 80753867670, 10973017315470, 372759573255306, 351745902037915, 11949006236698685, 86466986871277074, 122261486084598, 43869141307765893, 35803482505852454889891, 2162247909473892250092390, 73452778286546376583337010
OFFSET
1,1
COMMENTS
Also the squarefree part of (A001653(n+1)^2-1)/2 or of A002315(n)^2-1
Walsh shows that the system of simultaneous Pell equations x^2 - d*y^2 = z^2 - 2*d*y^2 = 1 has solutions in positive integers x, y, z if and only if d belongs to this sequence and, under the abc conjecture, this sequences grows exponentially.
LINKS
FORMULA
a(n) = A007913(A078522(n+1)).
EXAMPLE
a(2) = 210 since A078522(3) = 840 = 210 * 2^2.
PROG
(PARI) a(n)={local(z=1+quadgen(8)); core(imag(z^(2*n+1))^2-1)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Tomohiro Yamada, Sep 15 2019
EXTENSIONS
Missing a(11) inserted and more terms from Georg Fischer, Mar 02 2023
STATUS
approved