login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327234
Smallest BII-number of a set-system with cut-connectivity n.
1
0, 1, 4, 52, 2868
OFFSET
0,3
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
We define the cut-connectivity (A326786) of a set-system to be the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a disconnected or empty set-system, with the exception that a set-system with one vertex has cut-connectivity 1. Except for cointersecting set-systems (A326853), this is the same as vertex-connectivity (A327051).
Conjecture: a(n > 1) = A327373(n) = the BII-number of K_n.
EXAMPLE
The sequence of terms together with their corresponding set-systems:
0: {}
1: {{1}}
4: {{1,2}}
52: {{1,2},{1,3},{2,3}}
2868: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
CROSSREFS
The same for spanning edge-connectivity is A327147.
The cut-connectivity of the set-system with BII-number n is A326786(n).
Sequence in context: A015001 A355612 A317829 * A327373 A193914 A288490
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 03 2019
STATUS
approved