login
A326908
Number of non-isomorphic sets of subsets of {1..n} that are closed under union and intersection.
4
2, 4, 9, 23, 70, 256, 1160, 6599, 48017, 452518, 5574706, 90198548, 1919074899, 53620291147, 1962114118390, 93718030190126, 5822768063787557
OFFSET
0,1
EXAMPLE
Non-isomorphic representatives of the a(0) = 2 through a(3) = 23 sets of subsets:
{} {} {} {}
{{}} {{}} {{}} {{}}
{{1}} {{1}} {{1}}
{{}{1}} {{12}} {{12}}
{{}{1}} {{}{1}}
{{}{12}} {{123}}
{{2}{12}} {{}{12}}
{{}{2}{12}} {{}{123}}
{{}{1}{2}{12}} {{2}{12}}
{{3}{123}}
{{}{2}{12}}
{{23}{123}}
{{}{3}{123}}
{{}{23}{123}}
{{}{1}{2}{12}}
{{3}{23}{123}}
{{}{1}{23}{123}}
{{}{3}{23}{123}}
{{3}{13}{23}{123}}
{{}{2}{3}{23}{123}}
{{}{3}{13}{23}{123}}
{{}{2}{3}{13}{23}{123}}
{{}{1}{2}{3}{12}{13}{23}{123}}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n]]], SubsetQ[#, Union@@@Tuples[#, 2]]&&SubsetQ[#, Intersection@@@Tuples[#, 2]]&]], {n, 0, 3}]
CROSSREFS
The labeled version is A306445.
Taking first differences and prepending 1 gives A326898.
Taking second differences and prepending two 1's gives A001930.
Sequence in context: A125789 A058731 A291981 * A229048 A144309 A080376
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Aug 03 2019
STATUS
approved